Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis?
Tran, P.T.N.; Kumar, V.; Bossier, P. (2020). Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis? Emerging Microbes & Infections 9(1): 1919-1932. https://hdl.handle.net/10.1080/22221751.2020.1811778
In: Emerging Microbes & Infections. Taylor & Francis: Abingdon. e-ISSN 2222-1751, more
Peer reviewed article  

Available in  Authors 

Keywords
    Artemia franciscana Kellog, 1906 [WoRMS]
    Marine/Coastal
Author keywords
    PirAB(VP)toxin; vibriosis; Artemia franciscana; synergistic effect; antagonistic effect

Authors  Top 

Abstract
    Gram-negative marine bacterium Vibrio parahaemolyticus is an important aquatic pathogen and has been demonstrated to be the causative agent of acute hepatopancreatic necrotic disease (AHPND) in shrimp aquaculture. The AHPND-causing V. parahaemolyticus strains contain a pVA1 plasmid encoding the binary PirAVP and PirBVP toxins, are the primary virulence factor that mediates AHPND and mortality in shrimp. Since PirABVP toxins are secreted extracellularly, one can hypothesize that PirABVP toxins would aggravate vibriosis in the aquatic environment. To address this, in vivo and in vitro experiments were conducted. Germ-free Artemia franciscana were co-challenged with PirABVP toxins and 10 Vibrio spp. The in vivo results showed that PirABVP toxin interact synergistically with MM30 (a quorum sensing AI-2 deficient mutant) and V. alginolyticus AQ13-91, aggravating vibriosis. However, co-challenge by PirABVP toxins and V. campbellii LMG21363, V. parahaemolyticus CAIM170, V. proteolyticus LMG10942, and V. anguillarum NB10 worked antagonistically, increasing the survival of Artemia larvae. The in vitro results showed that the addition of PirABVP toxins significantly modulated the production of the virulence factors of studied Vibrio spp. Yet these in vitro results did not help to explain the in vivo results. Hence it appears that PirABVP toxins can aggravate vibriosis. However, the dynamics of interaction is strain dependent.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors