Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

New insights into the type II toxins from the sea anemone Heteractis crispa
Kalina, R.S.; Peigneur, S.; Zelepuga, E.A.; Dmitrenok, P.S.; Kvetkina, A.N.; Kim, N.Y.; Leychenko, E.V.; Tytgat, J.; Kozlovskaya, E.P.; Monastyrnaya, M.M.; Gladkikh, I.N. (2020). New insights into the type II toxins from the sea anemone Heteractis crispa. Toxins 12(1): 44. https://hdl.handle.net/10.3390/toxins12010044
In: Toxins. Multidisciplinary Digital Publishing Institute (MDPI): Basel. e-ISSN 2072-6651, more
Peer reviewed article  

Available in  Authors 

Keywords
    Radianthus crispa (Hemprich & Ehrenberg in Ehrenberg, 1834) [WoRMS]
    Marine/Coastal
Author keywords
    sea anemone; type II toxins; voltage-gated sodium channels; electrophysiology

Authors  Top 
  • Kalina, R.S.
  • Peigneur, S., more
  • Zelepuga, E.A.
  • Dmitrenok, P.S.
  • Kvetkina, A.N.
  • Kim, N.Y.
  • Leychenko, E.V.
  • Tytgat, J., more
  • Kozlovskaya, E.P.
  • Monastyrnaya, M.M.
  • Gladkikh, I.N.

Abstract
    Toxins modulating NaV channels are the most abundant and studied peptide components of sea anemone venom. Three type-II toxins, δ-SHTX-Hcr1f (= RpII), RTX-III, and RTX-VI, were isolated from the sea anemone Heteractis crispa. RTX-VI has been found to be an unusual analog of RTX-III. The electrophysiological effects of Heteractis toxins on nine NaV subtypes were investigated for the first time. Heteractis toxins mainly affect the inactivation of the mammalian NaV channels expressed in the central nervous system (NaV1.1–NaV1.3, NaV1.6) as well as insect and arachnid channels (BgNaV1, VdNaV1). The absence of Arg13 in the RTX-VI structure does not prevent toxin binding with the channel but it has changed its pharmacological profile and potency. According to computer modeling data, the δ-SHTX-Hcr1f binds within the extracellular region of the rNaV1.2 voltage-sensing domain IV and pore-forming domain I through a network of strong interactions, and an additional fixation of the toxin at the channel binding site is carried out through the phospholipid environment. Our data suggest that Heteractis toxins could be used as molecular tools for NaV channel studies or insecticides rather than as pharmacological agents.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors