Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Taxa-specific activity loss and mortality patterns in freshwater trematode cercariae under subarctic conditions
Born-Torrijos, A.; van Beest, G.S.; Vyhlídalová, T.; Knudsen, R.; Kristoffersen, R.; Amundsen, P.-A.; Thieltges, D.W.; Soldánová, M. (2022). Taxa-specific activity loss and mortality patterns in freshwater trematode cercariae under subarctic conditions. Parasitology 149(4): 457-468. https://dx.doi.org/10.1017/s0031182021002006
In: Parasitology. Cambridge University Press: London. ISSN 0031-1820; e-ISSN 1469-8161, more
Peer reviewed article  

Available in  Authors 

Author keywords
    High latitude regions; larval stages; life cycle; parasite; transmission strategies

Authors  Top 
  • Born-Torrijos, A.
  • van Beest, G.S.
  • Vyhlídalová, T.
  • Knudsen, R.
  • Kristoffersen, R.
  • Amundsen, P.-A.
  • Thieltges, D.W., more
  • Soldánová, M.

Abstract

    Cercarial activity and survival are crucial traits for the transmission of trematodes. Temperature is particularly important, as faster depletion of limited cercarial energy reserves occurs at high temperatures. Seasonal climate conditions in high latitude regions may be challenging to complete trematode life cycle during the 6-month ice-free period, but temperature effects on the activity and survival of freshwater cercariae have not been previously identified. After experimentally simulating natural subarctic conditions during warmer and colder months (13 and 6°C), a statistical approach identifying changes in the tendency of cercarial activity loss and mortality data was used to detect differences in three trematode genera, represented by four taxa (Diplostomum spp., Apatemon spp., small- and large-sized Plagiorchis spp.). A strong temperature-dependent response was identified in both activity loss and mortality in all taxa, with Diplostomum spp. cercariae showing the most gradual changes compared to other taxa. Furthermore, whilst activity loss and mortality dynamics could not be divided into ‘fish- vs invertebrate-infecting cercariae’ groups, the detected taxa-specific responses in relation to life-history traits indicate the swimming behaviour of cercariae and energy allocation among larvae individuals as the main drivers. Cercariae exploit the short transmission window that allows a stable continuance of trematodes’ life cycles in high-latitude freshwater ecosystems.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors