Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Population responses to harvesting in fluctuating environments
Lee, A.M.; Jarillo, J.; Peeters, B.; Hansen, B.B.; Cao-Garcia, F.J.; Saether, B.-E.; Engen, S. (2022). Population responses to harvesting in fluctuating environments. Clim. Res. 86: 79-91. https://dx.doi.org/10.3354/cr01656
In: Climate Research. Inter-Research: Oldendorf/Luhe. ISSN 0936-577X; e-ISSN 1616-1572, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Climate change · Environmental stochasticity · Hunting · Fisheries · Multi-species systems · Population structure

Authors  Top 
  • Lee, A.M.
  • Jarillo, J., more
  • Peeters, B.
  • Hansen, B.B.
  • Cao-Garcia, F.J.
  • Saether, B.-E.
  • Engen, S.

Abstract
    Achieving sustainable harvesting of natural populations depends on our ability to predict population responses to the combined effects of harvesting and environmental fluctuations while accounting for other internal and external factors that influence population dynamics in time and space. Here, we review recent research showing how spatial patterns and interspecific interactions can influence population responses to harvesting in fluctuating environments. We highlight several pathways through which harvesting can, often inadvertently, influence the dynamics and resilience to environmental fluctuations of both harvested and surrounding non-harvested populations and species. For instance, spatial models have shown that harvesting is expected to influence the spatial synchrony of population fluctuations, both of the harvested species and its competitors, predators and prey, with implications for population extinction risk. Dispersal and interspecific interactions can cause responses to harvesting in areas and species that are not themselves harvested. Harvesting that selectively targets certain groups of individuals, either intentionally or through for example spatially biased harvesting, can amplify environmentally induced population fluctuations by biasing the population structure towards individuals that are more sensitive to environmental variation. On the other hand, harvesting can in some cases buffer populations against the density-dependent effects of harsh climatic conditions, which are probably more common than previously acknowledged. Recent advances in modeling are providing new predictions that are highly relevant under global warming and now need to be tested empirically. We discuss how knowledge of these pathways can be used to increase the sustainability of harvesting.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors