Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

A biobased, bioactive, low CO2 impact coating for soil improvers
Weiß, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Gübitz, G.; Nyanhongo, G. (2021). A biobased, bioactive, low CO2 impact coating for soil improvers. Green Chem. 23(17): 6501-6514. https://dx.doi.org/10.1039/d1gc02221k
In: Green Chemistry. Royal Society of Chemistry: Cambridge. ISSN 1463-9262; e-ISSN 1463-9270, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Weiß, R.
  • Gritsch, S.
  • Brader, G.
  • Nikolic, B.
  • Spiller, M., more
  • Santolin, J., more
  • Weber, H.K.
  • Schwaiger, N.
  • Pluchon, S.
  • Dietel, K.
  • Gübitz, G.
  • Nyanhongo, G.

Abstract
    Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 °C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 × 10−3 Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg−1 product, making it a viable alternative to fossil-based coatings.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors