Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Fate of organic micropollutants in reverse electrodialysis: influence of membrane fouling and channel clogging
Ma, L.; Gutierrez, L.; Van Vooren, T.; Vanoppen, M.; Kazemabad, M.; Verliefde, A.; Cornelissen, E.R. (2021). Fate of organic micropollutants in reverse electrodialysis: influence of membrane fouling and channel clogging. Desalination 512: 115114. https://dx.doi.org/10.1016/j.desal.2021.115114
In: Desalination. Elsevier: Amsterdam. ISSN 0011-9164; e-ISSN 1873-4464, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Reverse electrodialysis; Organic micropollutant; Secondary-treated wastewater; Membrane fouling and channel clogging; Transport and adsorption

Authors  Top 
  • Kazemabad, M., more
  • Verliefde, A., more
  • Cornelissen, E.R., more

Abstract
    Reverse electrodialysis (RED)-based hybrid processes (e.g., RED-ED/RO) have been proposed for more energy-efficient desalination in drinking water production. The use of secondary-treated wastewater as a low-salinity stream in RED raises concerns about enhanced membrane fouling and, especially, potential organic micropollutants (OMPs) contamination of drinking water sources. The influence of membrane fouling and channel clogging on the transport and adsorption of 25 OMPs in RED was investigated using synthetic and real seawater and secondary-treated wastewater for 40 days. Real wastewater induced more membrane fouling and channel clogging than its synthetic counterparts and real seawater, as evidenced by pressure drop increase, permselectivity decrease, and ATP levels increase. The OMP transport and adsorption in real seawater conditions were higher than their synthetic counterparts, while OMP transport and adsorption under real wastewater conditions decreased significantly compared to synthetic wastewater conditions, possibly due to: 1) higher OMP-membrane interaction compared to OMP-fouling layer interaction (steric and electrostatic mechanisms), and 2) OMP adsorption onto the effluent organic matter in real wastewater. These results provide critical implications for industrial scenarios: OMPs transport might be overestimated at the lab-scale when using synthetic streams, clearly indicating the key role of effluent organic matter and fouling in RED using impaired water.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors