Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

More than just hitchhikers: a survey of bacterial communities associated with diatoms originating from sea turtles
Filek, K.; Lebbe, L.; Willems, A.; Chaerle, P.; Vyverman, W.; Žižek, M.; Bosak, S. (2022). More than just hitchhikers: a survey of bacterial communities associated with diatoms originating from sea turtles. FEMS Microbiol. Ecol. 98(10): fiac104. https://dx.doi.org/10.1093/femsec/fiac104
In: FEMS Microbiology Ecology. Federation of European Microbiological Societies: Amsterdam. ISSN 0168-6496; e-ISSN 1574-6941, more
Related to:
Filek, K.; Lebbe, L.; Willems, A.; Chaerle, P.; Vyverman, W.; Žižek, M.; Bosak, S. (2022). More than just hitchhikers: a survey of bacterial communities associated1 with diatoms originating from marine reptiles. bioRxiv 2022: 1-27. https://dx.doi.org/10.1101/2022.04.19.488760, more
Peer reviewed article  

Available in  Authors | Dataset 

Keywords
    Scientific Publication
    Bacillariophyceae [WoRMS]; Bacteria [WoRMS]
    Marine/Coastal
Author keywords
    diatoms, epizoic bacteria, epizoic communities, bacteria diatom interactions, phycosphere

Authors  Top | Dataset 
  • Vyverman, W., more
  • Žižek, M.
  • Bosak, S.

Abstract
    Diatoms and bacteria are known for being the first colonizers of submerged surfaces including the skin of marine reptiles. Sea turtle carapace and skin harbour diverse prokaryotic and eukaryotic microbes, including several epizoic diatoms. However, the importance of diatom-bacteria associations is hardly investigated in biofilms associated with animal hosts. This study provides an inventory of diatoms, bacteria, and diatom-associated bacteria originating from loggerhead sea turtles using both metabarcoding and culturing approaches. Amplicon sequencing of the carapace and skin samples chloroplast gene rbcL and 16S rRNA gene detected in total 634 diatom amplicon sequence variants (ASVs) and 3,661 bacterial ASVs indicating a high diversity. Cultures of putative epizoic and non-epizoic diatoms contained 458 bacterial ASVs and their bacterial assemblages reflected those of their host. Diatom strains allowed for enrichment and isolation of bacterial families rarely observed on turtles, such as Marinobacteraceae, Alteromonadaceae, and Alcanivoracaceae. When accounting for phylogenetic relationships between bacterial ASVs, we observed related diatom genera might retain similar microbial taxa in culture, regardless of the turtle's skin or carapace source. These data provide deeper insights into the sea turtle-associated microbial communities, and reveal the potential of epizoic biofilms as a source of novel microbes and possibly important diatom-bacteria associations.

Dataset
  • Filek, K.; Department of Biology, Faculty of Science, University of Zagreb: Croatia; Protistology and Aquatic Ecology group, Department of Biology, Ghent University: Belgium; (2020): Diatom interactions in the sea turtle epizoic biofilm. Marine Data Archive., more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset