Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Modelling evidence for late Eocene Antarctic glaciations
Van Breedam, J.; Huybrechts, P.; Crucifix, M. (2022). Modelling evidence for late Eocene Antarctic glaciations. Earth Planet. Sci. Lett. 586: 117532. https://dx.doi.org/10.1016/j.epsl.2022.117532
In: Earth and Planetary Science Letters. Elsevier: Amsterdam. ISSN 0012-821X; e-ISSN 1385-013X, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Antarctica; late Eocene; ice sheets; Eocene-Oligocene transition; emulator

Authors  Top 

Abstract
    It is generally believed that a large scale Antarctic ice sheet formed at the Eocene-Oligocene transition (34.44-33.65 Ma). However, oxygen isotope excursions during the late Eocene (38-34 Ma) and geomorphic evidence of glacial erosion suggest that there were ephemeral continental scale glaciations before the Oi-1 event. Here, we investigate the Antarctic ice sheet evolution over a multi-million year timescale during the late Eocene up to the early Oligocene with the most recent estimates of carbon dioxide evolution over this time period and different bedrock elevation reconstructions. A novel ice sheet-climate modelling approach is applied where the Antarctic ice sheet model VUB-AISMPALEO is coupled to the emulated climate from HadSM3 using the coupler CLISEMv1.0. Our modelling results show that short-lived continental scale Antarctic glaciation might have occurred during the late Eocene when austral summer insolation reached a minimum in a narrow range of carbon dioxide concentrations. The Antarctic ice sheet first reached the coast in Prydz Bay and later in the Weddell Sea region, supporting the glaciomarine sediments dated prior to the EOT.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors