Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Whole-genome sequencing reveals forgotten lineages and recurrent hybridizations within the kelp genus Alaria (Phaeophyceae)
Bringloe, T.T.; Zaparenkov, D.; Starko, S.; Grant, W.S.; Vieira, C.; Kawai, H.; Hanyuda, T.; Filbee-Dexter, K.; Klimova, A.; Klochkova, T.A.; Krause-Jensen, D.; Olesen, B.; Verbruggen, H. (2021). Whole-genome sequencing reveals forgotten lineages and recurrent hybridizations within the kelp genus Alaria (Phaeophyceae). J. Phycol. 57(6): 1721-1738. https://dx.doi.org/10.1111/jpy.13212
In: Journal of Phycology. Blackwell Science: New York. ISSN 0022-3646; e-ISSN 1529-8817, more
Peer reviewed article  

Available in  Authors 

Keywords
    Alaria Greville, 1830 [WoRMS]
    Marine/Coastal
Author keywords
    Arctic; chloroplast; high-throughput sequencing; mitochondrial; nuclear; shotgun sequencing; ribbon kelp

Authors  Top 
  • Bringloe, T.T.
  • Zaparenkov, D.
  • Starko, S.
  • Grant, W.S.
  • Vieira, C., more
  • Kawai, H.
  • Hanyuda, T.
  • Filbee-Dexter, K.
  • Klimova, A.
  • Klochkova, T.A.
  • Krause-Jensen, D.
  • Olesen, B.
  • Verbruggen, H., more

Abstract
    The genomic era continues to revolutionize our understanding of the evolution of biodiversity. In phycology, emphasis remains on assembling nuclear and organellar genomes, leaving the full potential of genomic datasets to answer long-standing questions about the evolution of biodiversity largely unexplored. Here, we used whole-genome sequencing (WGS) datasets to survey species diversity in the kelp genus Alaria, compare phylogenetic signals across organellar and nuclear genomes, and specifically test whether phylogenies behave like trees or networks. Genomes were sequenced from across the global distribution of Alaria (including Alaria crassifolia, A. praelonga, A. crispa, A. marginata, and A. esculenta), representing over 550 GB of data and over 2.2 billion paired reads. Genomic datasets retrieved 3,814 and 4,536 single-nucleotide polymorphisms (SNPs) for mitochondrial and chloroplast genomes, respectively, and upwards of 148,542 high-quality nuclear SNPs. WGS revealed an Arctic lineage of Alaria, which we hypothesize represents the synonymized taxon A. grandifolia. The SNP datasets also revealed inconsistent topologies across genomic compartments, and hybridization (i.e., phylogenetic networks) between Pacific A. praelonga, A. crispa, and putative A. grandifolia, and between some lineages of the A. marginata complex. Our analysis demonstrates the potential for WGS data to advance our understanding of evolution and biodiversity beyond amplicon sequencing, and that hybridization is potentially an important mechanism contributing to novel lineages within Alaria. We also emphasize the importance of surveying phylogenetic signals across organellar and nuclear genomes, such that models of mixed ancestry become integrated into our evolutionary and taxonomic understanding.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors