Mollusk death assemblages in 210Pb-dated marine sediment cores reveal recent biotic changes in the Gulf of Guanahacabibes, NW Cuba
Armenteros, M.; Díaz-Asencio, M.; Peraza-Escarra, R.; Fernández-Garcés, R.; Martínez-Suárez, A.; Kenney, W.F.; Brenner, M. (2021). Mollusk death assemblages in 210Pb-dated marine sediment cores reveal recent biotic changes in the Gulf of Guanahacabibes, NW Cuba. Mar. Environ. Res. 171: 105477. https://dx.doi.org/10.1016/j.marenvres.2021.105477 In: Marine Environmental Research. Applied Science Publishers: Barking. ISSN 0141-1136; e-ISSN 1879-0291, more | |
Keywords | Seagrass Mollusca [WoRMS] Marine/Coastal | Author keywords | Benthic ecology; Biodiversity; Seagrass; mollusks; Trophic guild; Gulf of Mexico; Pb-210 dating; C-14 dating |
Authors | | Top | - Armenteros, M., more
- Díaz-Asencio, M.
- Peraza-Escarra, R.
- Fernández-Garcés, R.
| - Martínez-Suárez, A.
- Kenney, W.F.
- Brenner, M.
| |
Abstract | We investigated stratigraphic changes in mollusk death assemblages and geochemistry in sediment cores from four seagrass beds and one unvegetated site in the Gulf of Guanahacabibes (GG), NW Cuba. There was a transition from mangrove to seagrass beds, associated with sea level rise ∼6000 years ago. Sediment accumulation rates during the last century showed a general rise, but increased sharply after ∼1980, likely because of human activities. The GG displayed overall high mollusk γ-diversity, and our estimate of 189 species is biased toward the low end. High β-diversity was driven by inter-site differences in grain size, vegetation cover, and nutrient input. Spatial heterogeneity within the basin influenced downcore abundance and diversity metrics, highlighting the influence of local drivers. Herbivorous gastropods dominated in seagrass beds and suspension feeder bivalves were dominant on sandy bottom. In the top parts of cores, species richness declined at two sites that were subject to high, human-mediated bulk sedimentation rates and eutrophication. Conservation measures are needed to preserve this hotspot of marine diversity. |
|