Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Natural hypoxic conditions do not affect the respiration rates of the cold-water coral Desmophyllum pertusum (Lophelia pertusa) living in the Angola margin (Southeastern Atlantic Ocean)
Gori, A.; Orejas, C.; Mienis, F.; Ferrier-Pagès, C.; Bilan, M.; Flöter, S.; Reynaud, S.; Sweetman, A.K.; Roberts, J.M.; Wienberg, C.; Hebbeln, D. (2023). Natural hypoxic conditions do not affect the respiration rates of the cold-water coral Desmophyllum pertusum (Lophelia pertusa) living in the Angola margin (Southeastern Atlantic Ocean). Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 197: 104052. https://dx.doi.org/10.1016/j.dsr.2023.104052
In: Deep-Sea Research, Part I. Oceanographic Research Papers. Elsevier: Oxford. ISSN 0967-0637; e-ISSN 1879-0119, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Gori, A.
  • Orejas, C.
  • Mienis, F., more
  • Ferrier-Pagès, C.
  • Bilan, M.
  • Flöter, S.
  • Reynaud, S.
  • Sweetman, A.K.
  • Roberts, J.M.
  • Wienberg, C.
  • Hebbeln, D.

Abstract
    Large, well-developed and flourishing reefs dominated by the cold-water coral Desmophyllum pertusum have recently been discovered along the Angola margin in the southeastern Atlantic Ocean living under very low oxygen concentrations (0.6–1.5 mL L−1). This study assessed the respiration rates of this coral in a short-term (10 days) aquarium experiment under naturally low oxygen concentrations (1.4 ± 0.5 mL L−1) as well as under saturated oxygen concentrations (6.1 ± 0.6 mL L−1). We found no significant difference in respiration rates between the two oxygen concentrations. Furthermore, the respiration rates of D. pertusum were in the same order of magnitude as those of the same species living under normoxic conditions in other areas. This work expands the current knowledge on the metabolic activity of cold-water corals under hypoxic conditions, evidencing that low oxygen conditions are not a general limiting factor for the overall distribution of D. pertusum.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors