Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks
de Winter, N.J.; Killam, D.; Fröhlich, L.; de Nooijer, L.; Boer, W.; Schöne, B.R.; Thébault, J.; Reichart, G.-J. (2023). Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks. Biogeosciences 20(14): 3027-3052. https://dx.doi.org/10.5194/bg-20-3027-2023
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, more
Peer reviewed article  

Available in  Authors 

Keywords
    Pecten maximus (Linnaeus, 1758) [WoRMS]; Tridacna maxima (Röding, 1798) [WoRMS]; Tridacna squamosa Lamarck, 1819 [WoRMS]; Tridacna squamosina Sturany, 1899 [WoRMS]
    Marine/Coastal

Authors  Top 
  • de Winter, N.J., more
  • Killam, D.
  • Fröhlich, L.
  • de Nooijer, L., more
  • Boer, W., more
  • Schöne, B.R.
  • Thébault, J.
  • Reichart, G.-J., more

Abstract
    The chemical composition of mollusk shells is a useful tool in (paleo)climatology since it captures inter- and intra-annual variability in environmental conditions. Trace element and stable isotope analysis with improved sampling resolution now allows in situ determination of the composition of mollusk shell volumes precipitated at daily to sub-daily time intervals. Here, we discuss hourly resolved Mg / Ca, Mn / Ca, Sr / Ca, and Ba / Ca profiles measured by laser ablation inductively coupled plasma – mass spectrometry (ICP-MS) through shells of the photosymbiotic giant clams (Tridacna maxima, T. squamosa, and T. squamosina) and the non-photosymbiotic scallop Pecten maximus. Precise sclerochronological age models and spectral analysis allowed us to extract daily and tidal rhythms in the trace element composition of these shells. We find weak but statistically significant expressions of these periods and conclude that this cyclicity explains less than 10 % of the sub-annual variance in trace element profiles. Tidal and diurnal rhythms explain variability of, at most, 0.2 mmol mol−1 (∼ 10 % of mean value) in Mg / Ca and Sr / Ca, while ultradian Mn / Ca and Ba / Ca cyclicity has a median amplitude of less than 2 µmol mol−1 mol mol−1 (∼ 40 % and 80 % of the mean of Mn / Ca and Ba / Ca, respectively). Daily periodicity in Sr / Ca and Ba / Ca is stronger in Tridacna than in Pecten, with Pecten showing stronger tidal periodicity. One T. squamosa specimen which grew under a sunshade exhibits among the strongest diurnal cyclicity. Daily cycles in the trace element composition of giant clams are therefore unlikely to be driven by variations in direct insolation but rather reflect an inherent biological rhythmic process affecting element incorporation. Finally, the large amount of short-term trace element variability unexplained by tidal and daily rhythms highlights the dominance of aperiodic processes in mollusk physiology and/or environmental conditions over shell composition at the sub-daily scale. Future studies should aim to investigate whether this remaining variability in shell chemistry reliably records weather patterns or circulation changes in the animals' environment.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors