Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice
Lauber, J.; Hattermann, T.; de Steur, L.; Darelius, E.; Auger, M.; Nøst, O.A.; Moholdt, G. (2023). Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice. Nature Geoscience 16(10): 877-885. https://dx.doi.org/10.1038/s41561-023-01273-5
In: Nature Geoscience. Nature Publishing Group: London. ISSN 1752-0894; e-ISSN 1752-0908, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Lauber, J.
  • Hattermann, T.
  • de Steur, L., more
  • Darelius, E.
  • Auger, M.
  • Nøst, O.A.
  • Moholdt, G.

Abstract
    Understanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m yr−1, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors