Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Experimental mining plumes and ocean warming trigger stress in a deep pelagic jellyfish
Stenvers, V.I.; Hauss, H.; Bayer, T.; Havermans, C.; Hentschel, U.; Schmittmann, L.; Sweetman, A.K.; Hoving, H.-J.T. (2023). Experimental mining plumes and ocean warming trigger stress in a deep pelagic jellyfish. Nature Comm. 14(1): 7352. https://dx.doi.org/10.1038/s41467-023-43023-6
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keywords
    Periphylla periphylla (Péron & Lesueur, 1810) [WoRMS]
    Marine/Coastal

Authors  Top 
  • Stenvers, V.I.
  • Hauss, H.
  • Bayer, T.
  • Havermans, C., more
  • Hentschel, U.
  • Schmittmann, L.
  • Sweetman, A.K.
  • Hoving, H.-J.T.

Abstract
    The deep pelagic ocean is increasingly subjected to human-induced environmental change. While pelagic animals provide important ecosystem functions including climate regulation, species-specific responses to stressors remain poorly documented. Here, we investigate the effects of simulated ocean warming and sediment plumes on the cosmopolitan deep-sea jellyfish Periphylla periphylla, combining insights gained from physiology, gene expression and changes in associated microbiota. Metabolic demand was elevated following a 4 °C rise in temperature, promoting genes related to innate immunity but suppressing aerobic respiration. Suspended sediment plumes provoked the most acute and energetically costly response through the production of excess mucus (at ≥17 mg L−1), while inducing genes related to aerobic respiration and wound repair (at ≥167 mg L−1). Microbial symbionts appeared to be unaffected by both stressors, with mucus production maintaining microbial community composition. If these responses are representative for other gelatinous fauna, an abundant component of pelagic ecosystems, the effects of planned exploitation of seafloor resources may impair deep pelagic biodiversity and ecosystem functioning.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors