Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Vegetation controls on channel network complexity in coastal wetlands
van de Vijsel, R.C.; van Belzen, J.; Bouma, T.J.; van der Wal, D.; Borsje, B.W.; Temmerman, S.; Cornacchia, L.; Gourgue, O.; van de Koppel, J. (2023). Vegetation controls on channel network complexity in coastal wetlands. Nature Comm. 14(1): 7158. https://dx.doi.org/10.1038/s41467-023-42731-3
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Complexity; Ecological modelling; Geomorphology

Authors  Top 
  • van de Vijsel, R.C., more
  • van Belzen, J., more
  • Bouma, T.J., more
  • van der Wal, D., more
  • Borsje, B.W.
  • Temmerman, S., more
  • Cornacchia, L., more
  • Gourgue, O., more
  • van de Koppel, J., more

Abstract
    Channel networks are key to coastal wetland functioning and resilience under climate change. Vegetation affects sediment and hydrodynamics in many different ways, which calls for a coherent framework to explain how vegetation shapes channel network geometry and functioning. Here, we introduce an idealized model that shows how coastal wetland vegetation creates more complexly branching networks by increasing the ratio of channel incision versus topographic diffusion rates, thereby amplifying the channelization feedback that recursively incises finer-scale side-channels. This complexification trend qualitatively agrees with and provides an explanation for field data presented here as well as in earlier studies. Moreover, our model demonstrates that a stronger biogeomorphic feedback leads to higher and more densely vegetated marsh platforms and more extensive drainage networks. These findings may inspire future field research by raising the hypothesis that vegetation-induced self-organization enhances the storm surge buffering capacity of coastal wetlands and their resilience under sea-level rise.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors