Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Path following controller for autonomous ships: simulation, experiment, and application in shallow water
Chen, C.; Delefortrie, G.; Mansuy, M.; Lataire, E. (2024). Path following controller for autonomous ships: simulation, experiment, and application in shallow water. J. Mar. Sci. Technol. 29: 181-199. https://dx.doi.org/10.1007/s00773-023-00980-3
In: Journal of Marine Science and Technology. Springer: Tokyo. ISSN 0948-4280; e-ISSN 1437-8213, more
Peer reviewed article  

Available in  Authors 

Keywords
    Containers > Tanks > Towing tanks
    Harbours and waterways > Manoeuvring behaviour > Open water
    Physical modelling
    Simulations
    Water > Shallow water
    Marine/Coastal
Author keywords
    Manoeuvring simulator; Path following controller

Authors  Top 

Abstract
    This study aims to develop a practical path following controller and examine its control effects for large-sized ships in shallow water. First, a new controller is designed and implemented in a ship manoeuvring simulator, and the controller’s tracking capacity is evaluated via controlling a 6 DOF math model following a prescribed path at various speeds and water depths. Then, towing tank tests are conducted with the corresponding physical model to validate the simulation results. Based on experimental results, comparisons are executed between the proposed controller and the traditional controllers (e.g. fuzzy controller). Finally, the applicability of the controller is investigated through simulations of the ship transiting the Panama Canal, meanwhile, the bank effects on the controller’s performance are discussed. The results show that the designed controller offers satisfactory tracking performance. Simulation results match well with the experimental results despite slight discrepancies. Additionally, satisfactory path following performance is obtained by the simulations in the canal. To conclude, the proposed controller is able to fulfill path following missions in shallow water with high precision and can be applied in the manoeuvring simulator.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors