Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Selecting optimal air diving gradient factors for Belgian military divers: more conservative settings are not necessarily safer
De Ridder, S.; Pattyn, N.; Neyt, X.; Germonpré, P. (2023). Selecting optimal air diving gradient factors for Belgian military divers: more conservative settings are not necessarily safer. Diving Hyperb. Med. 53(3): 251-258. https://dx.doi.org/10.28920/dhm53.3.251-258
In: Diving and Hyperbaric Medicine. South Pacific Underwater Medicine Society: Melbourne. ISSN 1833-3516, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Computers-diving; Decompression; Decompression sickness; Decompression tables; Diving; Simulation; Models

Authors  Top 

Abstract
    Introduction: In 2018, the Belgian Defence introduced a commercial off-the-shelf dive computer (Shearwater Perdix™) for use by its military divers. There were operational constraints when using its default gradient factors (GF). We aimed to provide guidelines for optimal GF selection.
    Methods: The Defence and Civil Institute of Environmental Medicine (DCIEM) dive tables and the United States Navy (USN) air decompression tables are considered acceptably safe by the Belgian Navy Diving Unit. The decompression model used in the Shearwater Perdix (Bühlmann ZH-L16C algorithm with GF) was programmed in Python. Using a sequential search of the parameter space, the GF settings were optimised to produce decompression schedules as close as possible to those prescribed by the USN and DCIEM tables.
    Results: All reference profiles are approached when GFLO is kept equal to 100 and only GFHI is reduced to a minimum of 75 to prolong shallower stop times. Using the Perdix default settings (GFLO = 30 and GFHI = 70) yields deeper initial stops, leading to increased supersaturation of the ‘slower’ tissues, which potentially leads to an increased DCS risk. However, Perdix software does not currently allow for the selection of our calculated optimal settings (by convention GFLO < GFHI). A sub-optimal solution would be a symmetrical GF setting between 75/75 and 95/95.
    Conclusions: For non-repetitive air dives, the optimal GF setting is GFLO 100, with only the GFHI parameter lowered to increase safety. No evidence was found that using the default GF setting (30/70) would lead to a safer decompression for air dives as deep as 60 metres of seawater; rather the opposite. Belgian Navy divers have been advised against using the default GF settings of the Shearwater Perdix dive computer and instead adopt symmetrical GF settings which is currently the optimal achievable approach considering the software constraints.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors