Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Optimization design of the duct of a rim-driven thruster using the adjoint approach
Liu, B.; Vanierschot, M.; Buysschaert, F. (2023). Optimization design of the duct of a rim-driven thruster using the adjoint approach. Ocean Eng. 278: 114293. https://dx.doi.org/10.1016/j.oceaneng.2023.114293
In: Ocean Engineering. Pergamon: Elmsford. ISSN 0029-8018; e-ISSN 1873-5258, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Adjoint method; Duct optimization; Rim-driven thruster; Numerical simulations

Authors  Top 

Abstract
    In this study, the adjoint method is employed for the duct optimization of a rim-driven thruster (RDT). The work is mainly focused on the efficiency improvement of the thruster by adopting a more effective duct profile. As baseline design, a duct with symmetrically round-shaped ends and a flat middle part with a Ka4-70 propeller inside is considered. For applicability considerations, steady-state numerical simulations are carried out to solve the Reynolds-averaged Navier-Stokes equations (RANS) with the moving reference frame (MRF) method. The adjoint method modifies the geometry of the symmetric duct into a more streamlined shape while keeping the aspect ratio (the ratio of duct length and thickness) constant. The original and final profiles of the duct and their influence on the overall performance of the RDT are presented and analyzed. The results indicate that after optimization, the efficiency of the thruster is increased by an absolute value of 3 to 10%, depending on the advance coefficient. The thrust torque ratios of the propeller and rim have also increased, meaning the RDT can provide a higher thrust for an equivalent absorbed torque. Moreover, a preliminary examination of the cavitation number based on the lowest pressure on the blade surface indicates that the RDT with optimized duct has a better cavitation performance as well.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors