Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [7584]
A biotic ligand model predicting acute copper toxicity for Daphnia magna: effects of calcium, magnesium, sodium, potassium and pH
De Schamphelaere, K.A.C.; Janssen, C.R. (2002). A biotic ligand model predicting acute copper toxicity for Daphnia magna: effects of calcium, magnesium, sodium, potassium and pH. Environ. Sci. Technol. 36(1): 48-54. https://dx.doi.org/10.1021/es000253s
In: Environmental Science and Technology. American Chemical Society: Easton. ISSN 0013-936X; e-ISSN 1520-5851, more
Peer reviewed article  

Keywords
    Daphnia magna Straus, 1820 [WoRMS]
    Fresh water

Authors  Top 
  • De Schamphelaere, K.A.C., more
  • Janssen, C.R., more

Abstract
    The extent to which Ca2+, Mg2+, Na+, K+ ions and pH independently mitigate acute copper toxicity for the cladoceran Daphnia magna was examined. Higher activities of Ca2+, Mg2+, and Na+ (but not K+) linearly increased the 48-h EC50 (as Cu2+ activity), supporting the concept of competitive binding of these ions and copper ions to toxic action or transport sites at the organism−water interface (e.g. fish gill, the biotic ligand). The increase of the EC50 (as Cu2+ activity) with increasing H+, however, seemed to suggest cotoxicity of CuOH+ rather than proton competition. Based on the biotic ligand model (BLM) concept, we developed a methodology to estimate stability constants for the binding of Cu2+, CuOH+, Ca2+, Mg2+, Na+, and H+ to the biotic ligand, solely based on toxicity data. Following values were obtained:  log KCuBL = 8.02, log KCuOHBL= 7.45, log KCaBL = 3.47, log KMgBL = 3.58, log KNaBL = 3.19, and log KHBL ∼ 5.4. Further, we calculated that on average 39% of the biotic ligand sites need to be occupied by copper to induce a 50% acute effect for D. magna after 48 h of exposure. Using the estimated constants, a BLM was developed that can predict acute copper toxicity for D. magna as a function of water characteristics. The presented methodology can easily be applied for BLM development for other organisms and metals. After validation with laboratory and natural waters (including DOC), the developed model will support efforts to improve the ecological relevance of presently applied risk assessment procedures.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors