Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [79868]
Effects of mussel filtering activity on boundary layer structure
van Duren, L.A.; Herman, P.M.J.; Sandee, A.J.J.; Heip, C.H.R. (2006). Effects of mussel filtering activity on boundary layer structure. J. Sea Res. 55(1): 3-14. https://dx.doi.org/10.1016/j.seares.2005.08.001
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101; e-ISSN 1873-1414, more
Also appears in:
Friedrichs, M.; Graf, G.; van Duren, L.A. (Ed.) (2006). Exchange processes at the sediment-water interface: contributions by participants of the Second BioFlow Conference. Journal of Sea Research, Spec. Issue 55(1). Elsevier: Amsterdam. 1-85 pp., more
Peer reviewed article  

Available in  Authors 

Keywords
    Feeding
    Flow
    Flow
    Layers > Boundary layers > Benthic boundary layer
    Movement > Flow
    Properties > Surface properties > Roughness
    Turbulence
    Mytilus edulis Linnaeus, 1758 [WoRMS]
    Marine/Coastal
Author keywords
    benthic boundary layer; roughness; feeding currents; Mytilus edulis;turbulence; flow

Authors  Top 
  • van Duren, L.A., more
  • Herman, P.M.J., more
  • Sandee, A.J.J.
  • Heip, C.H.R., more

Abstract
    The structure of the benthic boundary layer over a bed of mussels (Mytilus edulis) was investigated in a large racetrack flume. Flow was observed to be modified both by the physical roughness of the mussel bed and by the momentum input of the exhalent jets of the mussels. Particularly when the mussels were closed, and filtering activity was reduced to a minimum, we observed an internal boundary layer, around 4 cm thick, within the log layer. This internal boundary layer was often masked when the mussels were filtering actively. The presence of an internal boundary layer indicates that the boundary layer is not only structured by friction drag, but that form drag due to roughness elements also plays an important role. Consequently, estimates of bed shear stress based on velocity or Reynolds stress measurements carried out more than a few cm above the bed may be inaccurate. Over inactive mussels the shear velocity in the internal boundary layer (the roughness sub-layer) is smaller and bed shear stress is consequently reduced. Filtration activity of the mussels increased the velocity gradient in the lower layer at low and intermediate velocities, but at higher flow rates velocity profiles were not affected. Clear effects of the exhalent jets on absolute levels of TKE could be measured at all ambient velocities, while the effect on the Reynolds stress was limited. Velocity normalised TKE and Reynolds stress also indicated that the effect of the siphonal currents was limited at high velocities.

    Our results indicate that mussel filtration activity may have an important effect on exchange processes at the sediment-water interface, but that the extent of the effect is highly dependent on the ambient flow conditions.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors