Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Making water flow: a comparison of the hydrodynamic characteristics of 12 different benthic biological flumes
Jonsson, P.R.; van Duren, L.A.; Amielh, M.; Asmus, R.; Aspden, R.J.; Daunys, D.; Friedrichs, M.; Friend, P.L.; Olivier, F.; Pope, N.; Precht, E.; Sauriau, P.-G.; Schaaff, E. (2006). Making water flow: a comparison of the hydrodynamic characteristics of 12 different benthic biological flumes. Aquat. Ecol. 40(4): 409-438. https://dx.doi.org/10.1007/s10452-006-9049-z
In: Aquatic Ecology. Springer: Dordrecht; London; Boston. ISSN 1386-2588; e-ISSN 1573-5125, more
Peer reviewed article  

Available in  Authors 

Keywords
    Equipment > Laboratory equipment > Flumes
    Layers > Boundary layers > Benthic boundary layer
    Methodology
    Physics > Mechanics > Fluid mechanics > Hydrodynamics
    Marine/Coastal
Author keywords
    benthic boundary layer; biological-physical interaction; flume tanks;hydrodynamics; methods

Authors  Top 
  • Jonsson, P.R.
  • van Duren, L.A., correspondent, more
  • Amielh, M.
  • Asmus, R., more
  • Aspden, R.J.
  • Daunys, D., more
  • Friedrichs, M.
  • Friend, P.L.
  • Olivier, F.
  • Pope, N.
  • Precht, E.
  • Sauriau, P.-G.
  • Schaaff, E.

Abstract
    Flume tanks are becoming increasingly important research tools in aquatic ecology, to link biological to hydrodynamical processes. There is no such thing as a “standard flume tank”, and no flume tank is suitable for every type of research question. A series of experiments has been carried out to characterise and compare the hydrodynamic characteristics of 12 different flume tanks that are designed specifically for biological research. These facilities are part of the EU network BioFlow. The flumes could be divided into four basic design types: straight, racetrack, annular and field flumes. In each facility, two vertical velocity profiles were measured: one at 0.05 m s−1 and one at 0.25 m s−1. In those flumes equipped with Acoustic Doppler Velocimeters (ADV), time series were also recorded for each velocity at two heights above the bottom: 0.05 m and 20% of the water depth. From these measurements turbulence characteristics, such as TKE and Reynolds stress, were derived, and autocorrelation spectra of the horizontal along-stream velocity component were plotted. The flume measurements were compared to two sets of velocity profiles measured in the field.
    Despite the fact that some flumes were relatively small, turbulence was fully developed in all channels. Straight and racetrack flumes generally produced boundary layers with a clearly definable logarithmic layer, similar to measurements in the field taken under steady flow conditions. The two annular flumes produced relatively thin boundary layers, presumably due to secondary flows developing in the curved channels. The profiles in the field flumes also differed considerably from the expected log profile. This may either have been due the construction of the flume, or due to unsteady conditions during measurement. Constraints imposed by the different flume designs on the suitability for different types of boundary layer research, as well as scaling issues are discussed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors