Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Patterns of organic osmolytes in two marine bivalves, Macoma balthica, and Mytilus spp., along their European distribution
Kube, S.; Gerber, A.; Jansen, J.M.; Schiedek, D. (2006). Patterns of organic osmolytes in two marine bivalves, Macoma balthica, and Mytilus spp., along their European distribution. Mar. Biol. (Berl.) 149(6): 1387-1396. https://dx.doi.org/10.1007/s00227-006-0303-7
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Kube, S.
  • Gerber, A.
  • Jansen, J.M.
  • Schiedek, D., more

Abstract
    Patterns of nine intracellular free amino acids (FAA), which are utilized as organic osmolytes for salinity-induced cell volume regulation in marine osmoconformers, were compared in five Macoma balthica populations and seven Mytilus spp. populations along their European distribution. Three types of FAA patterns were classified within both taxa: a northern Baltic type, a southern Baltic type and an Atlantic/Mediterranean type which mainly differ regarding the share of alanine and taurine. Differences are discussed in relation to habitat salinity and population genetics. Along a salinity gradient, the total size of the intracellular FAA pool did not differ between sympatric M. balthica and Mytilus spp., and was significantly correlated with habitat osmolality in a range from 70 to 600 mmol kg−1 H2O (oligohaline to mesohaline) in both bivalves. In M. balthica, this correlation was mainly based on significant correlations of alanine (15–100 mmol kg−1 DW), glycine (30–100 mmol kg−1 DW) and taurine (0–70 mmol kg−1 DW) with habitat osmolality. In Mytilus spp., only glycine (25–100 mmol kg−1 DW) and taurine (4–180 mmol kg−1 DW) were significantly correlated with habitat osmolality. The concentration of alanine was three times lower in Mytilus spp. than in M. balthica and did not correlate with habitat osmolality. Within a habitat osmolality range from 600 to 1,100 mmol kg−1 H2O (mesohaline to marine) the concentration of FAA remained constant in both taxa. It is suggested that under marine conditions additional organic osmolytes must become more important for cell volume regulation in Macoma and Mytilus.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors